
Big Data Analytics: Hadoop-Map Reduce &
NoSQL Databases

Abinav Pothuganti

Computer Science and Engineering, CBIT,Hyderabad, Telangana, India

Abstract— Today, we are surrounded by data like oxygen. The
exponential growth of data first presented challenges to
cutting- edge businesses such as Google, Yahoo, Amazon,
Microsoft, Facebook, Twitter etc. Data volumes to be
processed by cloud applications are growing much faster than
computing power. This growth demands new strategies
for processing and analysing information. Such large
volume of un-structured (or semi structured) and structured
data that gets created from various applications, emails, web
logs, social media is known as “Big Data”. This kind of data
exceeds the processing capacity of conventional database
systems. In this paper we will provide the basic knowledge
about Big Data, which is majorly being generated
because of cloud computing and also explain in detail about
the two widely used Big Data Analytics techniques i.e. Hadoop
MapReduce and NoSQL Database.

Keywords— Big Data, Big Data Analytics, Hadoop, NoSQL
Introduction

I. INTRODUCTION

Cloud computing has been driven fundamentally by the
need to process an exploding quantity of data in terms of
exabytes as we are approaching the Zetta Byte Era.
One critical trend shines through the cloud is Big Data.
Indeed, it's the core driver in cloud computing and will
define the future of IT. When a company needed to store
and access more data they had one of two choices. One
option would be to buy a bigger machine with more CPU,
RAM, disk space, etc. This is known as scaling vertically.
Of course, there is a limit to how big of a machine you can
actually buy and this does not work when you start talking
about internet scale. The other option would be to scale
horizontally. This usually meant contacting some database
vendor to buy a bigger solution. These solutions do not
come cheap and therefore required a significant investment.
Today, the source of data generated not only by the users
and applications but also “machine- generated,” and such
data is exponentially leading the change in the Big Data
space.

Big Data processing is performed through a
programming paradigm known as MapReduce. Typically,
implementation of the MapReduce paradigm requires
networked attached storage and parallel processing. The
computing needs of MapReduce programming are often
beyond what small and medium sized business are able to
commit.

Cloud computing is on-demand network access to
Computing resources, provided by an outside entity.
Common deployment models for cloud computing include
platform as a service (PaaS), software as a service (SaaS),

infrastructure as a service (IaaS), and hardware as a service
(HaaS).

Platform as a Service (PaaS) is the use of cloud
computing to provide platforms for the development and
use of custom applications. Software as a service (SaaS)
provides businesses with applications that are stored and
run on virtual servers – in the cloud. In the IaaS model, a
client business will pay on a per-use basis for use of
equipment to support computing operations including
storage, hardware, servers, and networking equipment.
HaaS is a cloud service based upon the model of time
sharing on minicomputers and mainframes.

The three types of cloud computing are the public cloud,
the private cloud, and the hybrid cloud. A public cloud is
the pay- as-you-go services. A private cloud is internal data
center of a business not available to the general public but
based on cloud structure. The hybrid cloud is a combination
of the public cloud and private cloud.

Three major reasons for small to medium sized
businesses to use cloud computing for big data
technology implementation are hardware cost reduction,
processing cost reduction, and ability to test the value of big
data.

II. BIG DATA

Big data is a collection of data sets so large and
complex which is also exceeds the processing capacity of
conventional database systems. The data is too big, moves
too fast, or doesn’t fit the structures of our current database
architectures. Big Data is typically large volume of un-
structured (or semi structured) and structured data that gets
created from various organized and unorganized
applications, activities and channels such as emails,
tweeter, web logs, Facebook, etc. The main difficulties with
Big Data include capture, storage, search, sharing, analysis,
and visualization. The core of Big Data is Hadoop which is
a platform for distributing computing problems across a
number of servers. It is first developed and released as open
source by Yahoo!, it implements the MapReduce approach
pioneered by Google in compiling its search indexes.
Hadoop’s MapReduce involves distributing a dataset
among multiple servers and operating on the data: the
“map” stage. The partial results are then recombined: the
“reduce” stage. To store data, Hadoop utilizes its own
distributed file system, HDFS, which makes data available
to multiple computing nodes. Big data explosion, a result
not only of increasing Internet usage by people around the
world, but also the connection of billions of devices to the
Internet. Eight years ago, for example, there were only
around 5 exabytes of data online. Just two years ago, that

Abinav Pothuganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 522-527

www.ijcsit.com 522

amount of data passed over the Internet over the course
of a single month. And recent estimates put monthly
Internet data flow at around 21 exabytes of data. This
explosion of data - in both its size and form - causes a
multitude of challenges for both people and machines.

III. HADOOP MAP REDUCE

Hadoop is a batch processing system for a cluster of
nodes that provides the underpinnings of most Big Data
analytic activities because it bundle two sets of
functionality most needed to deal with large unstructured
datasets namely, Distributed file system and MapReduce
processing. It is a project from the Apache Software
Foundation written in Java to support data intensive
distributed applications. Hadoop enables applications to
work with thousands of nodes and petabytes of data. The
inspiration comes from Google’s MapReduce and Google
File System papers. Hadoop’s biggest contributor has been
the search giant Yahoo, where Hadoop is extensively used
across the business platform.

A. High Level Architecture of Hadoop

Fig 1. High level Architecture of Hadoop

Pig: It is a dataflow processing (scripting) language
Apache Pig is a platform for analysing large data sets that
consists of a high-level language for expressing data
analysis programs. The main characteristic of Pig programs
is that their structure can be substantially parallelized
enabling them to handle very large data sets, simple syntax
and advanced built-in functionality provide an abstraction
that makes development of Hadoop jobs quicker and easier
to write than traditional Java MapReduce jobs.

Hive: Hive is a data warehouse infrastructure built on
top of Hadoop. Hive provides tools to enable
easy data summarization, ad-hoc querying and analysis of
large datasets stored in Hadoop files. It provides a
mechanism to put structure on this data and it also
provides a simple query language called Hive QL, based
on SQL, enabling users familiar with SQL to query this
data.

HCatalog: It is a storage management layer for Hadoop
that enables users with different data processing tools.
HCatalog’s table abstraction presents users with a relational
view of data in the Hadoop distributed file system (HDFS)
and ensures that users need not worry about where or in
what format their data is stored.

MapReduce: Hadoop MapReduce is a programming
model and software framework for writing applications that
rapidly process vast amounts of data in parallel on large

clusters of computer nodes. MapReduce uses the HDFS to
access file segments and to store reduced results.

HBase: HBase is a distributed, column-oriented database.
HBase uses HDFS for its underlying storage. It maps HDFS
data into a database like structure and provides Java API
access to this DB. It supports batch style computations
using MapReduce and point queries (random reads). HBase
is used in Hadoop when random, realtime read/write access
is needed. Its goal is the hosting of very large tables running
on top of clusters of commodity hardware.

HDFS: Hadoop Distributed File System (HDFS) is the
primary storage system used by Hadoop applications.
HDFS is, as its name implies, a distributed file system that
provides high throughput access to application data creating
multiple replicas of data blocks and distributing them on
compute nodes throughout a cluster to enable reliable and
rapid computations.

Core: The Hadoop core consist of a set of components
and interfaces which provides access to the distributed file
systems and general I/O (Serialization, Java RPC, Persistent
data structures). The core components also provide “Rack
Awareness”, an optimization which takes into account the
geographic clustering of servers, minimizing network
traffic between servers in different geographic clusters.

B. Architecture of Hadoop

Hadoop is a Map/Reduce framework that works on
HDFS or on HBase. The main idea is to decompose a job
into several and identical tasks that can be executed closer
to the data (on the DataNode). In addition, each task is
parallelized: the Map phase. Then all these intermediate
results are merged into one result: the Reduce phase. In
Hadoop, The JobTracker (a java process) is responsible for
monitoring the job, managing the Map/Reduce phase,
managing the retries in case of errors. The TaskTrackers
(Java process) are running on the different DataNodes. Each
TaskTracker executes the tasks of the job on the locally
stored data.

The core of the Hadoop Cluster Architecture is given
below:

HDFS (Hadoop Distributed File System): HDFS is the
basic file storage, capable of storing a large number of large
files.

 MapReduce: MapReduce is the programming model
by which data is analyzed using the processing resources
within the cluster.

Each node in a Hadoop cluster is either a master or a
slave. Slave nodes are always both a Data Node and a Task
Tracker. While it is possible for the same node to be both a
Name Node and a JobTracker

Name Node: Manages file system metadata and access
control. There is exactly one Name Node in each cluster.

Secondary Name Node: Downloads periodic
checkpoints from the name Node for fault-tolerance. There
is exactly one Secondary Name Node in each cluster.

Job Tracker: Hands out tasks to the slave nodes. There
is exactly one Job Tracker in each cluster.

Data Node: Holds file system data. Each data node
manages its own locally-attached storage and stores a copy

Abinav Pothuganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 522-527

www.ijcsit.com 523

of some or all blocks in the file system. There are one or
more Data Nodes in each cluster.

Task Tracker: Slaves that carry out map and reduce
tasks. There are one or more Task Trackers in each cluster.

C. Hadoop Distributed File System (HDFS)

An HDFS cluster has two types of node operating in a
master-worker pattern: a NameNode (the master) and a
number of DataNodes (workers). The namenode manages
the filesystem namespace. It maintains the filesystem tree
and the metadata for all the files and directories in the tree.
The namenode also knows the datanodes on which all the
blocks for a given file are located. Datanodes are the
workhorses of the filesystem. They store and retrieve
blocks when they are told to (by clients or the namenode),
and they report back to the namenode periodically with lists
of blocks that they are storing. Name Node decides about
replication of data blocks. In a typical HDFS, block size is
64MB and replication factor is 3 (second copy on the local
rack and third on the remote rack). The Figure 4 shown
architecture distributed file system HDFS. Hadoop
MapReduce applications use storage in a manner that is
different from general-purpose computing. To read an
HDFS file, client applications simply use a standard Java
file input stream, as if the file was in the native
filesystem. Behind the scenes, however, this stream is
manipulated to retrieve data from HDFS instead. First, the
Name Node is contacted to request access permission. If
granted, the Name Node will translate the HDFS filename
into a list of the HDFS block IDs comprising that file and a
list of Data Nodes that store each block, and return the lists
to the client. Next, the client opens a connection to the
“closest” Data Node (based on Hadoop rack-awareness, but
optimally the same node) and requests a specific block ID.
That HDFS block is returned over the same connection, and
the data delivered to the application. To write data to HDFS,
client applications see the HDFS file as a standard output
stream. Internally, however, stream data is first fragmented
into HDFS-sized blocks (64MB) and then smaller packets
(64kB) by the client thread. Each packet is enqueued into a
FIFO that can hold up to 5MB of data, thus decoupling the
application thread from storage system latency during
normal operation. A second thread is responsible for
dequeuing packets from the FIFO, coordinating with the
Name Node to assign HDFS block IDs and destinations,
and transmitting blocks to the Data Nodes (either local or
remote) for storage. A third thread manages
acknowledgements from the Data Nodes that data has been
committed to disk.

Fig 2. Hadoop Distributed Cluster File System Architecture

D. Map Reduce Architecture & Implementation

MapReduce is a data processing or parallel programming
model introduced by Google. In this model, a user specifies
the computation by two functions, Map and Reduce. In the
mapping phase, MapReduce takes the input data and feeds
each data element to the mapper. In the reducing phase, the
reducer processes all the outputs from the mapper and
arrives at a final result. In simple terms, the mapper is
meant to filter and transform the input into something that
the reducer can aggregate over. The underlying MapReduce
library automatically parallelizes the computation, and
handles complicated issues like data distribution, load
balancing and fault tolerance. Massive input, spread across
many machines, need to parallelize. Moves the data, and
provides scheduling, fault tolerance. The original
MapReduce implementation by Google, as well as its open-
source counterpart, Hadoop, is aimed for parallelizing
computing in large clusters of commodity machines. Map
Reduce has gained a great popularity as it gracefully and
automatically achieves fault tolerance. It automatically
handles the gathering of results across the multiple nodes
and returns a single result or set.

MapReduce model advantage is the easy scaling of data

processing over multiple computing nodes.

Fig 3. High Level view of MapReduce Programming Model

Fault tolerance: MapReduce is designed to be fault

tolerant because failures are common phenomena in large
scale distributed computing and it includes worker failure
and master failure.

Worker failure: The master pings every mapper and
reducer periodically. If no response is received for a certain
amount of time, the machine is marked as failed. The
ongoing task and any tasks completed by this mapper will
be re-assigned to another mapper and executed from the
very beginning. Completed reduce tasks do not need to be
re-executed because their output is stored in the global file
system.

Master failure: Since the master is a single machine, the
probability of master failure is very small. MapReduce will
re- start the entire job if the master fails. There are currently
three popular implementations of the MapReduce
programming model namely Google MapReduce, Apache
Hadoop, Stanford Phoenix.

Abinav Pothuganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 522-527

www.ijcsit.com 524

E. Execution Process in MapReduce Programming Model

In MapReduce programming model and a MapReduce
job consists of a map function, a reduce function, and When
a function called the below steps of actions take place:

 MapReduce will first divide the data into N
partitions with size varies from 16MB to 64MB

 Then it will start many programs on a cluster of
different machines. One of program is the master
program; the others are workers, which can
execute their work assigned by master. Master can
distribute a map task or a reduce task to an idle
worker.

 If a worker is assigned a Map task, it will parse the
input data partition and output the key/value pairs,
then pass the pair to a user defined Map function.
The map function will buffer the temporary
key/value pairs in memory. The pairs will
periodically be written to local disk and partitioned
into P pieces. After that, the local machine will
inform the master of the location of these pairs.

 If a worker is assigned a Reduce task and is
informed about the location of these pairs, the
Reducer will read the entire buffer by using remote
procedure calls. After that, it will sort the
temporary data based on the key.

 Then, the reducer will deal with all of the records.
For each key and according set of values, the
reducer passes key/value pairs to a user defined
Reduce function. The output is the final output of
this partition.

 After all of the mappers and reducers have finished
their work, the master will return the result to
users' programs. The output is stored in F
individual files.

Fig 4. Architecture of MapReduce

F. A MapReduce Programming Model Example

In essence MapReduce is just a way to take a big task
and split it into discrete task that can be done in parallel. A
simple problem that is often used to explain how
MapReduce works in practice consists in counting the
occurrences of single words within a text. This kind of

problem can be easily solved by launching a single
MapReduce job as given in the below:

 Input data
 Input data are partitioned into smaller chunks of

data
 For each chunk of input data, a “map task” runs

which applies the map function resulting output of
each map task is a collection of key-value pairs.

 The output of all map tasks is shuffled for each
distinct key in the map output; a collection is
created containing all corresponding values from
the map output.

 For each key-collection resulting from the shuffle
phase, a “reduce task” runs which applies the
reduce function to the collection of values.

 The resulting output is a single key-value pair.
 The collection of all key-value pairs resulting from

the reduce step is the output of the MapReduce job.

Fig 5. A MapReduce Programming Model Example

IV. NOSQL DATABASES

NoSQL systems are distributed, non-relational
databases designed for large-scale data storage and for
massively- parallel data processing across a large number of
commodity servers. They also use non-SQL languages and
mechanisms to interact with data (though some new feature
APIs that convert SQL queries to the system’s native query
language or tool). NoSQL database systems arose alongside
major Internet companies, such as Google, Amazon, and
Facebook; which had challenges in dealing with huge
quantities of data with conventional RDBMS solutions
could not cope.

A. Evolution of NoSQL Databases

Of the many different data-models, the relational model
has been dominating since the 80s, with
implementations like Oracle databases, MySQL and
Microsoft SQL Servers-also known as Relational
Database Management System (RDBMS). Lately,
however, in an increasing number of cases the use of

Abinav Pothuganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 522-527

www.ijcsit.com 525

relational databases leads to problems both because of
deficits and problems in the modelling of data and
constraints of horizontal scalability over several servers and
big amounts of data. There are two trends that bringing
these problems to the attention of the international
software community:

1. The exponential growth of the volume of data

generated by users, systems and sensors, further accelerated
by the concentration of large part of this volume on big
distributed systems like Amazon, Google and other cloud
services.
2. The increasing interdependency and complexity of
data accelerated by the Internet, Web2.0, social networks
and open and standardized access to data sources from a
large number of different systems.

Fig 6. Big Data Transactions with Interactions and Observations

Organizations that collect large amounts of unstructured

data are increasingly turning to non-relational databases,
now frequently called NoSQL databases. NoSQL databases
focus on analytical processing of large scale datasets,
offering increased scalability over commodity hardware.
Computational and storage requirements of applications
such as for Big Data Analytics, Business Intelligence and
social networking over peta-byte datasets have pushed SQL-
like centralized databases to their limits. This led to the
development of horizontally scalable, distributed non-
relational data stores, called No-SQL databases.

B. Characteristics of NoSQL Databases

In order to guarantee the integrity of data, most of the
classical database systems are based on transactions. This
ensures consistency of data in all situations of data
management. These transactional characteristics are also
known as ACID (Atomicity, Consistency, Isolation, and
Durability).However, scaling out of ACID-compliant
systems has shown to be a problem. Conflicts are arising
between the different aspects of high availability in
distributed systems that are not fully solvable - known as
the CAP- theorem.

Strong Consistency: all clients see the same version of
the data, even on updates to the dataset - e. g., by means of
the two-phase commit protocol (XA transactions), and
ACID.

High Availability: all clients can always find at least
one copy of the requested data, even if some of the
machines in a cluster are down.

Partition-tolerance: the total system keeps its
characteristic even when being deployed on different
servers, transparent to the client.
The CAP-Theorem postulates that only two of the three
different aspects of scaling out are can be achieved fully at
the same time.

Fig 7. Characteristics of NoSQL Databases

C. Classification of NoSQL Databases

We classify NoSQL Databases in four basic categories,
each suited to different kinds of tasks:

 Key-Value stores
 Document databases (or stores)
 Wide-Column (or Column-Family) stores
 Graph databases.

Key-Value stores:
 Typically, these DMS store items as alpha-numeric
identifiers (keys) and associated values in simple,
standalone tables (referred to as “hash tables”). The values
may be simple text strings or more complex lists and sets.
Data searches can usually only be performed against keys,
not values, and are limited to exact matches.

Fig 8. Key/Value Store NoSQL Database

Document Databases:
 Inspired by Lotus Notes, document databases were, as
their name implies, designed to manage and store
documents. These documents are encoded in a standard data

Abinav Pothuganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 522-527

www.ijcsit.com 526

exchange format such as XML, JSON (Javascript Option
Notation) or BSON (Binary JSON). Unlike the simple key-
value stores described above, the value column in document
databases contains semi- structured data-specifically
attribute name/value pairs. A single column can house
hundreds of such attributes, and the number and type of
attributes recorded can vary from row to row.

Fig 9. Document Store NoSQL Database

Wide-Column (or Column-Family) Stores:
 Like document databases, Wide-Column (or Column-
Family) stores (hereafter WC/CF) employ a distributed,
column-oriented data structure that accommodates multiple
attributes per key. While some WC/CF stores have a Key-
Value DNA (e.g., the Dynamo-inspired Cassandra), most
are patterned after Google’s Bigtable, the petabyte-scale
internal distributed data storage system Google
developed for its search index and other collections like
Google Earth and Google Finance. These generally
replicate not just Google’s Bigtable data storage structure,
but Google’s distributed file system (GFS) and MapReduce
parallel processing framework as well, as is the case with
Hadoop, which comprises the Hadoop File System (HDFS,
based on GFS) + Hbase (a Bigtable style storage system) +
MapReduce.
Graph Databases:

Graph databases replace relational tables with structured
relational graphs of interconnected key-value pairings. They
are similar to object-oriented databases as the graphs are
represented as an object-oriented network of nodes
(conceptual objects), node relationships (“edges”) and
properties (object attributes expressed as key-value pairs).
They are the only of the four NoSQL types discussed here
that concern themselves with relations, and their focus on
visual representation of information makes them more
human- friendly than other NoSQL DMS.

Fig 10. Graph NoSQL Database

V. CONCLUSION

Cloud technology progress & increased use of the
Internet are creating very large new datasets with increasing
value to businesses and processing power to analyse them
affordable. Big Data is still in its early infancy but it is
already having a profound effect on technology companies
and the way we do business. The size of these datasets
suggests that exploitation may well require a new category
of data storage and analysis systems with different
architectures.

 Both Hadoop-MapReduce programming paradigm
and NoSQL Databases have a substantial base in the Big
Data community and they are still expanding. HDFS,
the Hadoop Distributed File System, is a distributed file
system designed to hold very large amounts of data
(terabytes or even petabytes), and provide high-throughput
access to these information.

 Ease-of-use of the MapReduce method has made the
Hadoop Map Reduce technique more popular than any
other Data Analytics techniques (methods).

 REFERENCES
[1] R. Taylor. An overview of the Hadoop/MapReduce/HBase

framework and its current applications in bioinformatics BMC
bioinformatics,11(Suppl 12):S1, 2010.

[2] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[3] HDFS (hadoop distributed file system) architecture.
http://hadoop.apache.org/common/docs/current/hdfs

[4] R. Lammel. Google‟s mapreduce programming model – revisited.
Science of Computer Programming, 70(1):1 – 30, 2008.

[5] A Workload Model for MapReduce by Thomas A. de Ruiter, Master‟s
Thesis in Computer Science, Parallel and Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Computer
Science. Delft University of Technology, 2nd June 2012.

[6] Dhruba Borthaku, The Hadoop Distributed File System: Architecture
and Design. Retrieved from, 2010,
http://hadoop.apache.org/common/.

[7] Y. Hung-Chih, D. Ali, H. Ruey-Lung, and D.S. Parker, “Map-Reduce-
Merg e: Simplified Relation al Data Processing On Large Clusters”,
in Proceedings of the 2007 ACM Sigmod International Conference
on Management of Data Beijing”, China: acm, 2007.

[8] Rabi Prasad Padhy, “Big Data Processing with Hadoop-MapReduce
in Cloud Systems” in International Journal of Cloud Computing
and Services Science

[9] A B M Moniruzzaman and Syed Akhter Hossain, “NoSQL
Database: New Era of Databases for Big data Analytics-
Classification, Characteristics and Comparison”, in International
Journal of Database Theory and Application

Abinav Pothuganti / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 522-527

www.ijcsit.com 527

