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Abstract— Today, we are surrounded by data like oxygen. The 
exponential growth of data first presented challenges to 
cutting- edge businesses such as Google, Yahoo, Amazon, 
Microsoft, Facebook, Twitter etc. Data volumes to be 
processed by cloud applications are growing much faster than 
computing power. This   growth   demands   new   strategies 
for   processing   and analysing information. Such large 
volume of un-structured (or semi structured) and structured 
data that gets created from various applications, emails, web 
logs, social media is known as “Big Data”.  This kind of data 
exceeds the processing capacity of conventional database 
systems. In this paper we will provide the basic   knowledge 
about   Big   Data,   which   is   majorly   being generated 
because of cloud computing and also explain in detail about 
the two widely used Big Data Analytics techniques i.e. Hadoop 
MapReduce and NoSQL Database. 

Keywords— Big Data, Big Data Analytics, Hadoop, NoSQL 
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I. INTRODUCTION 

Cloud computing has been driven fundamentally by the 
need to process an exploding quantity of data in terms of 
exabytes as  we  are  approaching  the  Zetta  Byte  Era. 
One critical trend shines through the cloud is Big Data. 
Indeed, it's the core driver in cloud computing and will 
define the future of IT. When a company needed to store 
and access more data they had one of two choices. One 
option would be to buy a bigger machine with more CPU, 
RAM, disk space, etc. This is known as scaling vertically. 
Of course, there is a limit to how big of a machine you can 
actually buy and this does not work when you start talking 
about internet scale. The other option would be to scale 
horizontally. This usually meant contacting some database 
vendor to buy a bigger solution.  These solutions do not 
come cheap and therefore required a significant investment. 
Today, the source of data generated not only by the users 
and applications but also “machine- generated,” and such 
data is exponentially leading the change in the Big Data 
space. 

Big Data processing is performed through a 
programming paradigm known as MapReduce. Typically, 
implementation of the MapReduce paradigm requires 
networked attached storage and parallel processing. The 
computing needs of MapReduce programming are often 
beyond what small and medium sized business are able to 
commit. 

Cloud   computing   is   on-demand   network   access   to 
Computing resources, provided by an outside entity. 
Common deployment models for cloud computing include 
platform as a service (PaaS), software as a service (SaaS), 

infrastructure as a service (IaaS), and hardware as a service 
(HaaS). 

Platform as a Service (PaaS) is the use of cloud 
computing to provide platforms for the development and 
use of custom applications. Software as a service (SaaS) 
provides businesses with applications that are stored and 
run on virtual servers – in the cloud. In the IaaS model, a 
client business will pay on a per-use basis for use of 
equipment to support computing operations including 
storage, hardware, servers, and networking equipment. 
HaaS is a cloud service based upon the model of time 
sharing on minicomputers and mainframes. 

The three types of cloud computing are the public cloud, 
the private cloud, and the hybrid cloud. A public cloud is 
the pay- as-you-go services. A private cloud is internal data 
center of a business not available to the general public but 
based on cloud structure. The hybrid cloud is a combination 
of the public cloud and private cloud. 

Three major reasons for small to medium sized 
businesses to  use  cloud  computing  for  big  data 
technology implementation are hardware cost reduction, 
processing cost reduction, and ability to test the value of big 
data. 

II. BIG DATA

Big data is a collection of data sets so large and 
complex which is also exceeds the processing capacity of 
conventional database systems. The data is too big, moves 
too fast, or doesn’t fit the structures of our current database 
architectures. Big Data is typically large volume of un-
structured (or semi structured) and structured data that gets 
created from various organized   and   unorganized 
applications,   activities   and channels such as emails, 
tweeter, web logs, Facebook, etc. The main difficulties with 
Big Data include capture, storage, search, sharing, analysis, 
and visualization. The core of Big Data is Hadoop which is 
a platform for distributing computing problems across a 
number of servers. It is first developed and released as open 
source by Yahoo!, it implements the MapReduce approach 
pioneered by Google in compiling its search indexes. 
Hadoop’s MapReduce involves distributing a dataset 
among multiple servers and operating on the data: the 
“map” stage.  The partial results are then recombined:  the 
“reduce” stage. To store data, Hadoop utilizes its own 
distributed file system, HDFS, which makes data available 
to multiple computing nodes. Big data explosion, a result 
not only of increasing Internet usage by people around the 
world, but also the connection of billions of devices to the 
Internet. Eight years ago, for example, there were only 
around 5 exabytes of data online. Just two years ago, that 
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amount of data  passed  over  the  Internet  over  the  course  
of  a  single month. And recent estimates put monthly 
Internet data flow at around 21 exabytes of data. This 
explosion of data - in both its size and form - causes a 
multitude of challenges for both people and machines. 

III. HADOOP MAP REDUCE 

Hadoop is a batch processing system for a cluster of 
nodes that provides the  underpinnings of most Big Data 
analytic activities because  it  bundle  two  sets  of  
functionality most needed to deal with large unstructured 
datasets namely, Distributed file  system and  MapReduce 
processing. It is a project from the Apache Software 
Foundation written in Java to support data intensive 
distributed applications. Hadoop enables applications to 
work with thousands of nodes and petabytes of data. The 
inspiration comes from Google’s MapReduce and Google 
File System papers. Hadoop’s biggest contributor has been 
the search giant Yahoo, where Hadoop is extensively used 
across the business platform. 

A. High Level Architecture of Hadoop 

 
Fig 1.  High level Architecture of Hadoop 

Pig: It is a dataflow processing (scripting) language 
Apache Pig is a platform for analysing large data sets that 
consists of a high-level language for expressing data 
analysis programs. The main characteristic of Pig programs 
is that their structure can be substantially parallelized 
enabling them to handle very large data sets, simple syntax 
and advanced built-in functionality provide an abstraction 
that makes development of Hadoop jobs quicker and easier 
to write than traditional Java MapReduce jobs. 

Hive: Hive is a data warehouse infrastructure built on 
top of Hadoop.    Hive    provides    tools    to    enable    
easy    data summarization, ad-hoc querying and analysis of 
large datasets stored in Hadoop files.  It  provides  a  
mechanism  to  put structure on this data  and  it  also 
provides a  simple query language called Hive QL, based 
on SQL, enabling users familiar with SQL to query this 
data. 

HCatalog: It is a storage management layer for Hadoop 
that enables users with different data processing tools. 
HCatalog’s table abstraction presents users with a relational 
view of data in the Hadoop distributed file system (HDFS) 
and ensures that users need not worry about where or in 
what format their data is stored. 

MapReduce: Hadoop MapReduce is a programming 
model and software framework for writing applications that 
rapidly process vast amounts of data in parallel on large 

clusters of computer nodes. MapReduce uses the HDFS to 
access file segments and to store reduced results. 

HBase: HBase is a distributed, column-oriented database. 
HBase uses HDFS for its underlying storage. It maps HDFS 
data into a database like structure and provides Java API 
access to this DB. It supports batch style computations 
using MapReduce and point queries (random reads). HBase 
is used in Hadoop when random, realtime read/write access 
is needed. Its goal is the hosting of very large tables running 
on top of clusters of commodity hardware. 

HDFS: Hadoop Distributed File System (HDFS) is the 
primary storage system used by Hadoop applications. 
HDFS is, as its name implies, a distributed file system that 
provides high throughput access to application data creating 
multiple replicas of data blocks and distributing them on 
compute nodes throughout a cluster to enable reliable and 
rapid computations. 

Core: The Hadoop core consist of a set of components 
and interfaces which provides access to the distributed file 
systems and general I/O (Serialization, Java RPC, Persistent 
data structures). The core components also provide “Rack 
Awareness”, an optimization which takes into account the 
geographic clustering of servers, minimizing network 
traffic between servers in different geographic clusters. 

B. Architecture of Hadoop 

Hadoop is a Map/Reduce framework that works on 
HDFS or on HBase. The main idea is to decompose a job 
into several and identical tasks that can be executed closer 
to the data (on the DataNode). In addition, each task is 
parallelized: the Map phase. Then all these intermediate 
results are merged into one result: the Reduce phase. In 
Hadoop, The JobTracker (a java process) is responsible for 
monitoring the job, managing the Map/Reduce phase, 
managing the retries in case of errors. The TaskTrackers 
(Java process) are running on the different DataNodes. Each 
TaskTracker executes the tasks of the job on the locally 
stored data. 

The core of the Hadoop Cluster Architecture is given 
below: 

HDFS (Hadoop Distributed File System): HDFS is the 
basic file storage, capable of storing a large number of large 
files. 

 MapReduce:  MapReduce is the programming model 
by which data is analyzed using the processing resources 
within the cluster. 

Each node in a Hadoop cluster is either a master or a 
slave. Slave nodes are always both a Data Node and a Task 
Tracker. While it is possible for the same node to be both a 
Name Node and a JobTracker 

Name Node:  Manages file system metadata and access 
control. There is exactly one Name Node in each cluster.  

Secondary Name Node:  Downloads periodic 
checkpoints from the name Node for fault-tolerance. There 
is exactly one Secondary Name Node in each cluster. 

Job Tracker: Hands out tasks to the slave nodes. There 
is exactly one Job Tracker in each cluster. 

Data Node: Holds file system data. Each data node 
manages its own locally-attached storage and stores a copy 
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of some or all blocks in the file system. There are one or 
more Data Nodes in each cluster. 

Task Tracker: Slaves that carry out map and reduce 
tasks. There are one or more Task Trackers in each cluster. 

C. Hadoop Distributed File System (HDFS) 

An HDFS cluster has two types of node operating in a 
master-worker pattern:  a NameNode (the master) and a 
number of DataNodes (workers). The namenode manages 
the filesystem namespace. It maintains the filesystem tree 
and the metadata for all the files and directories in the tree. 
The namenode also knows the datanodes on which all the 
blocks for a given file are located. Datanodes are the 
workhorses of the filesystem. They store and retrieve 
blocks when they are told to (by clients or the namenode), 
and they report back to the namenode periodically with lists 
of blocks that they are storing. Name Node decides about 
replication of data blocks. In a typical HDFS, block size is 
64MB and replication factor is 3 (second copy on the local 
rack and third on the remote rack). The Figure 4 shown 
architecture distributed file system HDFS. Hadoop 
MapReduce applications use storage in a manner that is 
different from general-purpose computing. To read an 
HDFS file, client applications simply use a standard Java  
file  input  stream,  as  if  the  file  was  in  the  native 
filesystem. Behind the scenes, however, this stream is 
manipulated to retrieve data from HDFS instead. First, the 
Name Node is contacted to request access permission. If 
granted, the Name Node will translate the HDFS filename 
into a list of the HDFS block IDs comprising that file and a 
list of Data Nodes that store each block, and return the lists 
to the client. Next, the client opens a connection to the 
“closest” Data Node (based on Hadoop rack-awareness, but 
optimally the same node) and requests a specific block ID. 
That HDFS block is returned over the same connection, and 
the data delivered to the application. To write data to HDFS, 
client applications see the HDFS file as a standard output 
stream. Internally, however, stream data is first fragmented 
into HDFS-sized blocks (64MB) and then smaller packets 
(64kB) by the client thread. Each packet is enqueued into a 
FIFO that can hold up to 5MB of data, thus decoupling the 
application thread from storage system latency during 
normal operation. A second thread is responsible for 
dequeuing packets from the FIFO,  coordinating with  the  
Name  Node  to  assign  HDFS block IDs and destinations, 
and transmitting blocks to the Data Nodes (either  local  or  
remote) for  storage. A third thread manages 
acknowledgements from the Data Nodes that data has been 
committed to disk. 

 
Fig 2.  Hadoop Distributed Cluster File System Architecture 

D. Map Reduce Architecture & Implementation 

MapReduce is a data processing or parallel programming 
model introduced by Google. In this model, a user specifies 
the computation by two functions, Map and Reduce. In the 
mapping phase, MapReduce takes the input data and feeds 
each data element to the mapper. In the reducing phase, the 
reducer processes all the outputs from the mapper and 
arrives at a final result. In simple terms, the mapper is 
meant to filter and transform the input into something that 
the reducer can aggregate over. The underlying MapReduce 
library automatically parallelizes the computation, and 
handles complicated issues like data distribution, load 
balancing and fault tolerance. Massive input, spread across 
many machines, need to parallelize. Moves the data, and 
provides scheduling, fault tolerance. The original 
MapReduce implementation by Google, as well as its open-
source counterpart, Hadoop, is aimed for parallelizing 
computing in large clusters of commodity machines. Map 
Reduce has gained a great popularity as it gracefully and 
automatically achieves fault tolerance. It automatically 
handles the gathering of results across the multiple nodes 
and returns a single result or set.  

 
MapReduce model advantage is the easy scaling of data 

processing over multiple computing nodes. 

 
Fig 3.  High Level view of MapReduce Programming Model 

 
Fault tolerance: MapReduce is designed to be fault 

tolerant because failures are common phenomena in large 
scale distributed computing and it includes worker failure 
and master failure. 

Worker failure: The master pings every mapper and 
reducer periodically. If no response is received for a certain 
amount of time, the machine is marked as failed. The 
ongoing task and any tasks completed by this mapper will 
be re-assigned to another mapper and executed from the 
very beginning. Completed reduce tasks do not need to be 
re-executed because their output is stored in the global file 
system. 

Master failure: Since the master is a single machine, the 
probability of master failure is very small. MapReduce will 
re- start the entire job if the master fails. There are currently 
three popular implementations of the MapReduce 
programming model namely Google MapReduce, Apache 
Hadoop, Stanford Phoenix. 
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E. Execution Process in MapReduce  Programming  Model 

In MapReduce programming model and a MapReduce 
job consists of a map function, a reduce function, and When 
a function called the below steps of actions take place: 

 MapReduce will first divide the data into N 
partitions with size varies from 16MB to 64MB 

 Then it will start many programs on a cluster of 
different machines. One of program is the master 
program; the others are workers, which can 
execute their work assigned by master. Master can 
distribute a map task or a reduce task to an idle 
worker. 

 If a worker is assigned a Map task, it will parse the 
input data partition and output the key/value pairs, 
then pass the pair to a user defined Map function. 
The map function will buffer the temporary 
key/value pairs in memory. The pairs will 
periodically be written to local disk and partitioned 
into P pieces. After that, the local machine will 
inform the master of the location of these pairs. 

 If a worker is assigned a Reduce task and is 
informed about the location of these pairs, the 
Reducer will read the entire buffer by using remote 
procedure calls. After that, it will sort the 
temporary data based on the key. 

 Then, the reducer will deal with all of the records. 
For each key and according set of values, the 
reducer passes key/value pairs to a user defined 
Reduce function. The output is the final output of 
this partition. 

 After all of the mappers and reducers have finished 
their work, the master will return the result to 
users' programs. The output is stored in F 
individual files. 

 

 
Fig 4.  Architecture of MapReduce 

F. A MapReduce  Programming  Model Example 

In essence MapReduce is just a way to take a big task 
and split it into discrete task that can be done in parallel. A 
simple problem that is often used to explain how 
MapReduce works in practice consists in counting the 
occurrences of single words within a text. This kind of 

problem can be easily solved by launching a single 
MapReduce job as given in the below: 

 Input data 
 Input data are partitioned into smaller chunks of 

data 
 For each chunk of input data, a “map task” runs 

which applies the map function resulting output of 
each map task is a collection of key-value pairs. 

 The output of all map tasks is shuffled for each 
distinct key in the map output; a collection is 
created containing all corresponding values from 
the map output. 

 For each key-collection resulting from the shuffle 
phase, a “reduce task” runs which applies the 
reduce function to the collection of values.   

 The resulting output is a single key-value pair. 
 The collection of all key-value pairs resulting from 

the reduce step is the output of the MapReduce job. 
 

 
Fig 5.  A MapReduce Programming Model Example 

 

IV.   NOSQL DATABASES 

NoSQL  systems  are  distributed, non-relational 
databases designed  for  large-scale  data  storage  and  for  
massively- parallel data processing across a large number of 
commodity servers. They also use non-SQL languages and 
mechanisms to interact with data (though some new feature 
APIs that convert SQL queries to the system’s native query 
language or tool). NoSQL database systems arose alongside 
major Internet companies, such as Google, Amazon, and 
Facebook; which had challenges in dealing with huge 
quantities of data with conventional RDBMS solutions 
could not cope. 
 

A.  Evolution of NoSQL Databases 

Of the many different data-models, the relational model 
has been  dominating  since  the  80s,  with  
implementations like Oracle databases, MySQL and 
Microsoft SQL Servers-also known  as  Relational  
Database  Management  System (RDBMS). Lately, 
however, in an increasing number of cases the use of 
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relational databases leads to problems both because of  
deficits  and  problems  in  the  modelling  of  data  and 
constraints of horizontal scalability over several servers and 
big amounts of data. There are two trends that bringing 
these problems to   the   attention   of   the   international   
software community: 

 
1. The  exponential  growth  of  the  volume  of  data 

generated by users, systems and sensors, further accelerated 
by the concentration of large part of this volume on big 
distributed systems like Amazon, Google and other cloud 
services. 
2. The increasing interdependency and complexity of 
data accelerated by the Internet, Web2.0, social networks 
and open and standardized access to data sources from a 
large number of different systems. 
 

 
 

Fig 6.   Big Data Transactions with Interactions and Observations 
 
Organizations that collect large amounts of unstructured 

data are increasingly turning to non-relational databases, 
now frequently called NoSQL databases. NoSQL databases 
focus on analytical processing of large scale datasets, 
offering increased scalability over commodity hardware. 
Computational and storage requirements of applications 
such as for Big Data Analytics, Business Intelligence and 
social networking over peta-byte datasets have pushed SQL-
like centralized databases to their limits. This led to the 
development of horizontally scalable, distributed non- 
relational data stores, called No-SQL databases. 
 

B. Characteristics of NoSQL Databases 

In order to guarantee the integrity of data, most of the 
classical database systems are based on transactions. This 
ensures consistency of data in all situations of data 
management. These transactional characteristics are also 
known as ACID (Atomicity, Consistency, Isolation, and 
Durability).However, scaling out of ACID-compliant 
systems has shown to be a problem. Conflicts are arising 
between the different aspects of high availability in 
distributed systems that are not fully solvable - known as 
the CAP- theorem. 

Strong Consistency: all clients see the same version of 
the data, even on updates to the dataset - e. g., by means of 
the two-phase commit protocol (XA transactions), and 
ACID.  

High Availability: all clients can always find at least 
one copy of the requested data, even if some of the 
machines in a cluster are down. 

Partition-tolerance: the total system keeps its 
characteristic even when being deployed on different 
servers, transparent to the client. 
The CAP-Theorem postulates that only two of the three 
different aspects of scaling out are can be achieved fully at 
the same time. 

 
Fig 7.   Characteristics of NoSQL Databases 

 

C. Classification of NoSQL Databases 

We classify NoSQL Databases in four basic categories, 
each suited to different kinds of tasks: 

 Key-Value stores 
 Document databases (or stores) 
 Wide-Column (or Column-Family) stores 
 Graph databases. 

 
Key-Value stores: 
     Typically, these DMS store items as alpha-numeric 
identifiers (keys) and associated values in simple, 
standalone tables (referred to as “hash tables”). The values 
may be simple text strings or more complex lists and sets. 
Data searches can usually only be performed against keys, 
not values, and are limited to exact matches. 
 
 
 
 
 
 
 
 

Fig 8.  Key/Value Store NoSQL Database 

 
Document Databases: 
     Inspired by Lotus Notes, document databases were, as 
their name implies, designed to manage and store 
documents. These documents are encoded in a standard data 
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exchange format such as XML, JSON (Javascript Option 
Notation) or BSON (Binary JSON). Unlike the simple key-
value stores described above, the value column in document 
databases contains semi- structured data-specifically 
attribute name/value pairs.  A single column can house 
hundreds of such attributes, and the number and type of 
attributes recorded can vary from row to row. 

 
Fig 9. Document Store NoSQL Database 

 
Wide-Column (or Column-Family) Stores: 
     Like document databases, Wide-Column (or Column- 
Family) stores (hereafter WC/CF) employ a distributed, 
column-oriented data structure that accommodates multiple 
attributes per key. While some WC/CF stores have a Key- 
Value DNA (e.g., the Dynamo-inspired Cassandra), most 
are patterned after Google’s Bigtable, the petabyte-scale 
internal distributed  data  storage  system  Google  
developed  for  its search index and other collections like 
Google Earth and Google Finance. These generally 
replicate not just Google’s Bigtable data storage structure, 
but Google’s distributed file system (GFS) and MapReduce 
parallel processing framework as  well, as is the case with 
Hadoop, which comprises the Hadoop File System (HDFS, 
based on GFS) + Hbase (a Bigtable style storage system) + 
MapReduce. 
Graph Databases: 

Graph databases replace relational tables with structured 
relational graphs of interconnected key-value pairings. They 
are similar to object-oriented databases as the graphs are 
represented as an object-oriented network of nodes 
(conceptual objects), node relationships (“edges”) and 
properties (object attributes expressed as key-value pairs). 
They are the only of the four NoSQL types discussed here 
that concern themselves with relations, and their focus on 
visual representation of information makes them more 
human- friendly than other NoSQL DMS. 

 
Fig 10.  Graph NoSQL Database 

 

V. CONCLUSION 

Cloud technology progress & increased use of the 
Internet are creating very large new datasets with increasing 
value to businesses and processing power to analyse them 
affordable. Big Data is still in its early infancy but it is 
already having a profound effect on technology companies 
and the way we do business. The size of these datasets 
suggests that exploitation may well require a new category 
of data storage and analysis systems with different 
architectures. 

     Both Hadoop-MapReduce programming paradigm 
and NoSQL Databases have a substantial base in the Big 
Data community   and   they   are   still   expanding.   HDFS,   
the Hadoop Distributed File System, is a distributed file 
system designed to hold very large amounts of data 
(terabytes or even petabytes), and provide high-throughput 
access to these information. 

     Ease-of-use of the MapReduce method has made the 
Hadoop Map Reduce technique more popular than any 
other Data Analytics techniques (methods). 
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